VCF_mulReC | VCD_mulReC | VCE_mulReC |
VPF_mulReC | VPD_mulReC | VPE_mulReC |
VI_mulC | VBI_mulC | VSI_mulC | VLI_mulC | VQI_mulC | |
VU_mulC | VUB_mulC | VUS_mulC | VUL_mulC | VUQ_mulC | VUI_mulC |
|
Function | Multiply all vector elements by a constant |
|
Syntax C/C++ | #include <VFmath.h>
void VF_mulC( fVector Y, fVector X, ui size, float C );
(similarly VD_, VE_, VI_, etc.)
void VCF_mulC( cfVector Y, cfVector X, ui size, fComplex C );
void VCF_mulReC( cfVector Y, cfVector X, ui size, float CRe );
(similarly VCD_, VCE_, VPF_, VPD_, VPE_) |
C++ VecObj | #include <OptiVec.h>
void vector<T>::mulC( const vector<T>& X, const T& C );
void vector<complex<T>>::mulC( const vector<complex<T>>& X, complex<T> C );
void vector<complex<T>>::mulReC( const vector<complex<T>>& X, const T& CRe ); |
Pascal/Delphi | uses VFmath;
procedure VF_mulC( Y, X:fVector; size:UIntSize; C:Single );
procedure VCF_mulC( Y, X:cfVector; size:UIntSize; C:fComplex );
procedure VCF_mulReC( Y, X:cfVector; size:UIntSize; CRe:Single ); |
|
CUDA function C/C++ | #include <cudaVFmath.h>
int cudaVF_mulC( fVector d_Y, fVector d_X, ui size, float C );
int cusdVF_mulC( fVector d_Y, fVector d_X, ui size, float *d_C );
void VFcu_mulC( fVector d_Y, fVector d_X, ui size, float C );
#include <cudaVCFmath.h>
int cudaVCF_mulReC( cfVector d_Y, cfVector d_X, ui size, float CRe );
int cusdVCF_mulReC( cfVector d_Y, cfVector d_X, ui size, float *d_CRe );
void VCFcu_mulReC( cfVector h_Y, cfVector h_X, ui size, float CRe );
|
CUDA function Pascal/Delphi | uses VFmath, VCFmath;
function cudaVF_mulC( d_Y, d_X:fVector; size:UIntSize; C:Single ): IntBool;
function cusdVF_mulC( d_Y, d_X:fVector; size:UIntSize; d_C:PSingle ): IntBool;
procedure VFcu_mulC( h_Y, h_X:fVector; size:UIntSize; C:Single );
function cudaVCF_mulReC( d_Y, d_X:cfVector; size:UIntSize; CRe:Single );
function cusdVCF_mulReC( d_Y, d_X:cfVector; size:UIntSize; d_CRe:PSingle );
procedure VCFcu_mulReC( h_Y, h_X:cfVector; size:UIntSize; CRe:Single );
|
|
Description | Yi = C * Xi
The complex floating-point versions exist in two variants, one for complex constants C, the other for real-valued constants CRe by which the complex vector is multiplied. |
|
|
|
|