VF_mulCVD_mulCVE_mulC
VCF_mulCVCD_mulCVCE_mulC
VCF_mulReCVCD_mulReCVCE_mulReC
VPF_mulCVPD_mulCVPE_mulC
VPF_mulReCVPD_mulReCVPE_mulReC
VI_mulCVBI_mulCVSI_mulCVLI_mulCVQI_mulC 
VU_mulCVUB_mulCVUS_mulCVUL_mulCVUQ_mulCVUI_mulC
FunctionMultiply all vector elements by a constant
Syntax C/C++#include <VFmath.h>
void VF_mulC( fVector Y, fVector X, ui size, float C );

    (similarly VD_,   VE_,   VI_, etc.)
void VCF_mulC( cfVector Y, cfVector X, ui size, fComplex C );
void VCF_mulReC( cfVector Y, cfVector X, ui size, float CRe );

    (similarly VCD_,   VCE_,   VPF_,   VPD_,   VPE_)
C++ VecObj#include <OptiVec.h>
void vector<T>::mulC( const vector<T>& X, const T& C );
void vector<complex<T>>::mulC( const vector<complex<T>>& X, complex<T> C );
void vector<complex<T>>::mulReC( const vector<complex<T>>& X, const T& CRe );
Pascal/Delphiuses VFmath;
procedure VF_mulC( Y, X:fVector; size:UIntSize; C:Single );
procedure VCF_mulC( Y, X:cfVector; size:UIntSize; C:fComplex );
procedure VCF_mulReC( Y, X:cfVector; size:UIntSize; CRe:Single );
CUDA function C/C++#include <cudaVFmath.h>
int cudaVF_mulC( fVector d_Y, fVector d_X, ui size, float C );
int cusdVF_mulC( fVector d_Y, fVector d_X, ui size, float *d_C );
void VFcu_mulC( fVector d_Y, fVector d_X, ui size, float C );
#include <cudaVCFmath.h>
int cudaVCF_mulReC( cfVector d_Y, cfVector d_X, ui size, float CRe );
int cusdVCF_mulReC( cfVector d_Y, cfVector d_X, ui size, float *d_CRe );
void VCFcu_mulReC( cfVector h_Y, cfVector h_X, ui size, float CRe );
CUDA function Pascal/Delphiuses VFmath, VCFmath;
function cudaVF_mulC( d_Y, d_X:fVector; size:UIntSize; C:Single ): IntBool;
function cusdVF_mulC( d_Y, d_X:fVector; size:UIntSize; d_C:PSingle ): IntBool;
procedure VFcu_mulC( h_Y, h_X:fVector; size:UIntSize; C:Single );
function cudaVCF_mulReC( d_Y, d_X:cfVector; size:UIntSize; CRe:Single );
function cusdVCF_mulReC( d_Y, d_X:cfVector; size:UIntSize; d_CRe:PSingle );
procedure VCFcu_mulReC( h_Y, h_X:cfVector; size:UIntSize; CRe:Single );
DescriptionYi = C * Xi
The complex floating-point versions exist in two variants, one for complex constants C, the other for real-valued constants CRe by which the complex vector is multiplied.
Error handlingnone
Return valuenone
See alsoVF_mulV,   VF_addC,   VF_divC,   VF_divrC,   VF_visC,   VF_redC

VectorLib Table of Contents  OptiVec home