VCF_divReC | VCD_divReC | VCE_divReC |
VPF_divReC | VPD_divReC | VPE_divReC |
VI_divC | VBI_divC | VSI_divC | VLI_divC | VQI_divC | |
VU_divC | VUB_divC | VUS_divC | VUL_divC | VUQ_divC | VUI_divC |
|
Function | Divide by a constant |
|
Syntax C/C++ | #include <VFmath.h>
void VF_divC( fVector Y, fVector X, ui size, float C );
void VCF_divC( cfVector Y, cfVector X, ui size, fComplex C );
void VCF_divReC( cfVector Y, cfVector X, ui size, float CRe ); |
C++ VecObj | #include <OptiVec.h>
void vector<T>::divC( const vector<T>& X, const T& C );
void vector<complex<T>>::divC( const vector<complex<T>>& X, complex<T> C );
void vector<complex<T>>::divReC( const vector<complex<T>>& X, const T& CRe ); |
Pascal/Delphi | uses VFmath;
procedure VF_divC( Y, X:fVector; size:UIntSize; C:Single );
procedure VCF_divC( Y, X:cfVector; size:UIntSize; C:fComplex );
procedure VCF_divReC( Y, X:cfVector; size:UIntSize; CRe:Single ); |
|
CUDA function C/C++ | #include <cudaVFmath.h>
int cudaVF_divC( fVector d_Y, fVector d_X, ui size, float C );
int cusdVF_divC( fVector d_Y, fVector d_X, ui size, float *d_C );
void VFcu_divC( fVector d_Y, fVector d_X, ui size, float C );
#include <cudaVCFmath.h>
int cudaVCF_divReC( cfVector d_Y, cfVector d_X, ui size, float CRe );
int cusdVCF_divReC( cfVector d_Y, cfVector d_X, ui size, float *d_CRe );
void VCFcu_divReC( cfVector h_Y, cfVector h_X, ui size, float CRe );
|
CUDA function Pascal/Delphi | uses VFmath, VCFmath;
function cudaVF_divC( d_Y, d_X:fVector; size:UIntSize; C:Single ): IntBool;
function cusdVF_divC( d_Y, d_X:fVector; size:UIntSize; d_C:PSingle ): IntBool;
procedure VFcu_divC( h_Y, h_X:fVector; size:UIntSize; C:Single );
function cudaVCF_divReC( d_Y, d_X:cfVector; size:UIntSize; CRe:Single );
function cusdVCF_divReC( d_Y, d_X:cfVector; size:UIntSize; d_CRe:PSingle );
procedure VCFcu_divReC( h_Y, h_X:cfVector; size:UIntSize; CRe:Single );
|
|
Description | Yi = Xi / C
The integer versions perform an integer division, discarding the remainder; the remainder itself may be obtained by the functions of the VI_modC family.
The complex floating-point versions exist in two variants, one for complex constants C, the other for real-valued constants CRe by which the complex vector is divided. |
|
|
|
|