VF_divrCVD_divrCVE_divrC
VCF_divrCVCD_divrCVCE_divrC
VCF_divrReCVCD_divrReCVCE_divrReC
VFx_divrCVDx_divrCVEx_divrC
VCFx_divrCVCDx_divrCVCEx_divrC
VPF_divrCVPD_divrCVPE_divrC
VPF_divrReCVPD_divrReCVPE_divrReC
VI_divrCVBI_divrCVSI_divrCVLI_divrCVQI_divrC 
VU_divrCVUB_divrCVUS_divrCVUL_divrCVUQ_divrCVUI_divrC
FunctionReverse division: divide a constant by a vector
Syntax C/C++#include <VFmath.h>
void VF_divrC( fVector Y, fVector X, ui size, float C );
void VFx_divrC( fVector Y, fVector X, ui size, float A, float B, float C );
void VCF_divrC( cfVector Y, cfVector X, ui size, fComplex C );
void VCFx_divrC( cfVector Y, cfVector X, ui size, fComplex A, fComplex B, fComplex C );
void VCF_divrReC( cfVector Y, cfVector X, ui size, float CRe );
C++ VecObj#include <OptiVec.h>
void vector<T>::divrC( const vector<T>& X, const T& C );
void vector<T>::x_divrC( const vector<T>& X, const T& A, const T& B, const T& C );
void vector<complex<T>>::divrC( const vector<complex<T>>& X, complex<T> C );
void vector<complex<T>>::x_divrC( const vector<complex<T>>& X, complex<T> A, complex<T> B, complex<T> C );
void vector<complex<T>>::divrReC( const vector<complex<T>>& X, const T& CRe );
Pascal/Delphiuses VFmath;
procedure VF_divrC( Y, X:fVector; size:UIntSize; C:Single );
procedure VFx_divrC( Y, X:fVector; size:UIntSize; A, B, C:Single );
procedure VCF_divrC( Y, X:cfVector; size:UIntSize; C:fComplex );
procedure VCFx_divrC( Y, X:cfVector; size:UIntSize; A, B, C:fComplex );
procedure VCF_divrReC( Y, X:cfVector; size:UIntSize; CRe:Single );
CUDA function C/C++#include <cudaVFmath.h>
int cudaVF_divrC( fVector d_Y, fVector d_X, ui size, float C );
int cusdVF_divrC( fVector d_Y, fVector d_X, ui size, float *d_C );
void VFcu_divrC( fVector d_Y, fVector d_X, ui size, float C );
int cudaVFx_divrC( fVector d_Y, fVector d_X, ui size, float A, float B, float C );
int cusdVFx_divrC( fVector d_Y, fVector d_X, ui size, float *d_A, float *d_B, float *d_C );
void VFxcu_divrC( fVector h_Y, fVector h_X, ui size, float A, float B, float C );
#include <cudaVCFmath.h>
int cudaVCF_divrReC( cfVector d_Y, cfVector d_X, ui size, float CRe );
int cusdVCF_divrReC( cfVector d_Y, cfVector d_X, ui size, float *d_CRe );
void VCFcu_divrReC( cfVector h_Y, cfVector h_X, ui size, float CRe );
CUDA function Pascal/Delphiuses VFmath, VCFmath;
function cudaVF_divrC( d_Y, d_X:fVector; size:UIntSize; C:Single ): IntBool;
function cusdVF_divrC( d_Y, d_X:fVector; size:UIntSize; d_C:PSingle ): IntBool;
procedure VFcu_divrC( h_Y, h_X:fVector; size:UIntSize; C:Single );
function cudaVFx_divrC( d_Y, d_X:fVector; size:UIntSize; A, B, C:Single );
function cusdVFx_divrC( d_Y, d_X:fVector; size:UIntSize; d_A, d_B, d_C:PSingle );
procedure VFxcu_divrC( h_Y, h_X:fVector; size:UIntSize; A, B, C:Single );
function cudaVCF_divrReC( d_Y, d_X:cfVector; size:UIntSize; CRe:Single );
function cusdVCF_divrReC( d_Y, d_X:cfVector; size:UIntSize; d_CRe:PSingle );
procedure VCFcu_divrReC( h_Y, h_X:cfVector; size:UIntSize; CRe:Single );
Descriptionsimple versions: Yi = C / Xi
expanded versions: Yi = C / (A*Xi+B)
The complex floating-point versions exist in two variants, one for complex constants C, the other for real-valued constants CRe which are divided by the complex vector.
Error handlingnone; for the floating-point versions, there are related functions that calculate 1.0 / Xi and 1.0 / (A*Xi+B): VF_inv and VFx_inv, respectively; both of these detect and handle SING errors.
Return valuenone
See alsoVF_divV,   VF_inv,   VF_addC,   VF_subC,   VF_mulC,   VF_divC,   VF_modC,   VF_visC,   VF_redC

VectorLib Table of Contents  OptiVec home