VF_sin2 VD_sin2 VE_sin2
 VFx_sin2 VDx_sin2 VEx_sin2
 VFr_sin2 VDr_sin2 VEr_sin2
 VFrx_sin2 VDrx_sin2 VErx_sin2
 Function Square of the sine function
 Syntax C/C++ #include int VF_sin2( fVector Y, fVector X, ui size ); int VFx_sin2( fVector Y, fVector X, ui size, float A, float B, float C ); C++ VecObj #include int vector::sin2( const vector& X ); int vector::x_sin2( const vector& X, const T& A, const T& B, const T& C ); Pascal/Delphi uses VFmath; function VF_sin2( Y, X:fVector; size:UIntSize ): IntBool; function VFx_sin2( Y, X:fVector; size:UIntSize; A, B, C:Single ): IntBool;
 CUDA function C/C++ #include int cudaVF_sin2( fVector d_Y, fVector d_X, ui size ); int cudaVFx_sin2( fVector d_Y, fVector d_X, ui size, float A, float B, float C ); int cusdVFx_sin2( fVector d_Y, fVector d_X, ui size, float *d_A, float *d_B, float *d_C ); int VFcu_sin2( fVector h_Y, fVector h_X, ui size ); int VFxcu_sin2( fVector h_Y, fVector h_X, ui size, float A, float B, float C ); CUDA function Pascal/Delphi uses VFmath; function cudaVF_sin2( d_Y, d_X:fVector; size:UIntSize ): IntBool; function cudaVFx_sin2( d_Y, d_X:fVector; size:UIntSize; A, B, C:Single ): IntBool; function cusdVFx_sin2( d_Y, d_X:fVector; size:UIntSize; d_A, d_B, d_C:PSingle ): IntBool; function VFcu_sin2( h_Y, h_X:fVector; size:UIntSize ): IntBool; function VFxcu_sin2( h_Y, h_X:fVector; size:UIntSize; A, B, C:Single ): IntBool;
 Description normal versions: Yi = sin2( Xi ) expanded versions: Yi = C * sin2( A*Xi+B ) Calculating the squared trigonometric functions directly is faster and sometimes more accurate than first calculating the trigonometric function itself and squaring it afterwards. The reduced-range versions with the prefixes VFr_ and VFrx_ are for situations in which one can be sure that all input values lie in the range -2p <= Xi <= +2p. These reduced-range functions are not available for CUDA.
 Error handling Precision errors lead to a default result of 0.0 and a non-zero return value, but are otherwise ignored; _matherr is not called. OVERFLOW errors can only occur in the complex versions and lead to a result of ±HUGE_VAL.
 Return value FALSE (0), if no error occurred, otherwise TRUE (non-zero).