VF_sin2VD_sin2VE_sin2
VFx_sin2VDx_sin2VEx_sin2
VFr_sin2VDr_sin2VEr_sin2
VFrx_sin2VDrx_sin2VErx_sin2
FunctionSquare of the sine function
Syntax C/C++#include <VFmath.h>
int VF_sin2( fVector Y, fVector X, ui size );
int VFx_sin2( fVector Y, fVector X, ui size, float A, float B, float C );
C++ VecObj#include <OptiVec.h>
int vector<T>::sin2( const vector<T>& X );
int vector<T>::x_sin2( const vector<T>& X, const T& A, const T& B, const T& C );
Pascal/Delphiuses VFmath;
function VF_sin2( Y, X:fVector; size:UIntSize ): IntBool;
function VFx_sin2( Y, X:fVector; size:UIntSize; A, B, C:Single ): IntBool;
CUDA function C/C++#include <cudaVFmath.h>
int cudaVF_sin2( fVector d_Y, fVector d_X, ui size );
int cudaVFx_sin2( fVector d_Y, fVector d_X, ui size, float A, float B, float C );
int cusdVFx_sin2( fVector d_Y, fVector d_X, ui size, float *d_A, float *d_B, float *d_C );
int VFcu_sin2( fVector h_Y, fVector h_X, ui size );
int VFxcu_sin2( fVector h_Y, fVector h_X, ui size, float A, float B, float C );
CUDA function Pascal/Delphiuses VFmath;
function cudaVF_sin2( d_Y, d_X:fVector; size:UIntSize ): IntBool;
function cudaVFx_sin2( d_Y, d_X:fVector; size:UIntSize; A, B, C:Single ): IntBool;
function cusdVFx_sin2( d_Y, d_X:fVector; size:UIntSize; d_A, d_B, d_C:PSingle ): IntBool;
function VFcu_sin2( h_Y, h_X:fVector; size:UIntSize ): IntBool;
function VFxcu_sin2( h_Y, h_X:fVector; size:UIntSize; A, B, C:Single ): IntBool;
Descriptionsimple versions: Yi = sin2( Xi )
expanded versions: Yi = C * sin2( A*Xi+B )
Calculating the squared trigonometric functions directly is faster and sometimes more accurate than first calculating the trigonometric function itself and squaring it afterwards.

If, on the other hand, one can be sure that all Xi are within a reasonable range one can employ the faster reduced-range versions with the prefixes VFr_ and VFrx_. The range requirements for the reduced-range versions are:
64-bit: |Xi| < 232 (roughly 4.2*109)
32-bit: |Xi| ≤ 2p).
These reduced-range functions are not available for CUDA.

Error handlingPrecision errors lead to a default result of 0.0 and a non-zero return value, but are otherwise ignored; _matherr is not called.
OVERFLOW errors can only occur in the complex versions and lead to a result of ±HUGE_VAL.
Return valueFALSE (0), if no error occurred, otherwise TRUE (non-zero).
See alsoVF_sin,   VF_sinrpi,  sin

VectorLib Table of Contents  OptiVec home