VF_sinrpi | VD_sinrpi | VE_sinrpi |
VF_sinrpi2 | VD_sinrpi2 | VE_sinrpi2 |
VF_sinrpi3 | VD_sinrpi3 | VE_sinrpi3 |
|
Function | Sine function of fractional multiples of p |
|
Syntax C/C++ | #include <VFmath.h>
int VF_sinrpi( fVector Y, iVector P, ui size, int q );
int VF_sinrpi2( fVector Y, iVector P, ui size, int q );
int VF_sinrpi3( fVector Y, iVector P, ui size, int q ); |
C++ VecObj | #include <OptiVec.h>
int vector<T>::sinrpi( const vector<int>& P, int q );
int vector<T>::sinrpi2( const vector<int>& P, int q );
int vector<T>::sinrpi3( const vector<int>& P, int q ); |
Pascal/Delphi | uses VFmath;
function VF_sinrpi( Y:fVector; P:iVector; size:UIntSize; q:Integer ): IntBool;
function VF_sinrpi2( Y:fVector; P:iVector; size:UIntSize; q:Integer ): IntBool;
function VF_sinrpi3( Y:fVector; P:iVector; size:UIntSize; q:Integer ): IntBool; |
|
CUDA function C/C++ | #include <cudaVFmath.h>
int cudaVF_sinrpi( fVector d_Y, iVector d_P, ui size, int q );
int cudaVF_sinrpi2( fVector d_Y, iVector d_P, ui size, int q );
int cudaVF_sinrpi3( fVector d_Y, iVector d_P, ui size, int q );
int VFcu_sinrpi( fVector h_Y, iVector h_P, ui size, int q );
int VFcu_sinrpi2( fVector h_Y, iVector h_P, ui size, int q );
int VFcu_sinrpi3( fVector h_Y, iVector h_P, ui size, int q );
|
CUDA function Pascal/Delphi | uses VFmath;
function cudaVF_sinrpi( d_Y:fVector; d_P:iVector; size:UIntSize; q:Integer ): IntBool;
function cudaVF_sinrpi2( d_Y:fVector; d_P:iVector; size:UIntSize; q:Integer ): IntBool;
function cudaVF_sinrpi3( d_Y:fVector; d_P:iVector; size:UIntSize; q:Integer ): IntBool;
function VFcu_sinrpi( h_Y:fVector; h_P:iVector; size:UIntSize; q:Integer ): IntBool;
function VFcu_sinrpi2( h_Y:fVector; h_P:iVector; size:UIntSize; q:Integer ): IntBool;
function VFcu_sinrpi3( h_Y:fVector; h_P:iVector; size:UIntSize; q:Integer ): IntBool;
|
|
Description | Yi = sin( (Pi / q) * p )
The sine of fractional multiples of p is calculated. There are three versions: VF_sinrpi is for general use with any arbitrary denominator q. If q is a power of 2, VF_sinrpi2 should be used which is a highly optimized version reading the results from a look-up table, if possible. If q is a multiple of 3, VF_sinrpi3 should be used. VF_sinrpi3 offers a convenient way to use degrees instead of radians; if, for example, q is 180, then the unit of the elements of P is "degree". VF_sinrpi2 and VF_sinrpi3 work also with q values they are not optimized for; in this case, however, memory space is wasted for the tables. |
|
Error handling | These functions should be error-proof, as long as q≠0. |
|
Return value | always FALSE (0) |
|
|