VF_expVD_expVE_exp
VCF_expVCD_expVCE_exp
VFx_expVDx_expVEx_exp
VCFx_expVCDx_expVCEx_exp
VCF_exptoPVCD_exptoPVCE_exptoP
FunctionExponential function
Syntax C/C++#include <VFmath.h>
int VF_exp( fVector Y, fVector X, ui size );
int VFx_exp( fVector Y, fVector X, ui size, float A, float B, float C );
int VCF_exptoP( pfVector Y, cfVector X, ui size );
C++ VecObj#include <OptiVec.h>
int vector<T>::exp( const vector<T>& X );
int vector<T>::x_exp( const vector<T>& X, const T& A, const T& B, const T& C );
int vector<polar<T>>::exptoP( const vector<complex<T>>& X );
Pascal/Delphiuses VFmath;
function VF_exp( Y, X:fVector; size:UIntSize ): IntBool;
function VFx_exp( Y, X:fVector; size:UIntSize; A, B, C:Single ): IntBool;
function VCF_exptoP( Y:pfVector; X:cfVector; size:UIntSize ): IntBool;
CUDA function C/C++#include <cudaVFmath.h>
int cudaVF_exp( fVector d_Y, fVector d_X, ui size );
int cudaVFx_exp( fVector d_Y, fVector d_X, ui size, float A, float B, float C );
int cusdVFx_exp( fVector d_Y, fVector d_X, ui size, float *d_A, float *d_B, float *d_C );
int VFcu_exp( fVector h_Y, fVector h_X, ui size );
int VFxcu_exp( fVector h_Y, fVector h_X, ui size, float A, float B, float C );
CUDA function Pascal/Delphiuses VFmath;
function cudaVF_exp( d_Y, d_X:fVector; size:UIntSize ): IntBool;
function cudaVFx_exp( d_Y, d_X:fVector; size:UIntSize; A, B, C:Single ): IntBool;
function cusdVFx_exp( d_Y, d_X:fVector; size:UIntSize; d_A, d_B, d_C:PSingle ): IntBool;
function VFcu_exp( h_Y, h_X:fVector; size:UIntSize ): IntBool;
function VFxcu_exp( h_Y, h_X:fVector; size:UIntSize; A, B, C:Single ): IntBool;
Descriptionnormal versions: Yi = exp( Xi )
expanded versions: Yi = C * exp( A*Xi+B )
Euler's constant e is raised to the Xi'th power.
For cartesian complex numbers, the result can be stored either in cartesian complex format (VCF_exp), or in polar coordinates (VCF_exptoP).
Variants of the exponential function, like its complement (VF_expc), the hyperbolic functions (e.g. VF_sinh), or the Gaussian distribution (VF_Gauss) are also available; see chapter 4.6.7 about "Exponentials" before using VF_exp for sums or other combinations of exponentials - maybe the desired function already exists.
Error handlingOVERFLOW errors lead to a default result of ±HUGE_VAL.
Return valueFALSE (0), if no error occurred, otherwise TRUE (non-zero)
See alsoVF_log,   VF_expc,   VF_pow,   VF_powexp,   VF_sinh,   VF_exp2,   VF_Gauss,   VPF_logtoC,   exp

VectorLib Table of Contents  OptiVec home