| VF_subV_ssq | VD_subV_ssq | VE_subV_ssq |   
 | 
| Function | Subtract two vectors and return the sum-of-squares of the differences |  
  | 
| Syntax C/C++ | #include <VFmath.h>
 float VF_subV_ssq( fVector Z, fVector X, fVector Y, ui size ); |  
| C++ VecObj | #include <OptiVec.h>
 T vector<T>::subV_ssq( const vector<T>& X, const vector<T>& Y ); |  
| Pascal/Delphi | uses VFmath;
 function VF_subV_ssq( Z, X, Y:fVector; size:UIntSize ): Single; |  
  | 
| CUDA function C/C++ | #include <cudaVFmath.h>
 int cudaVF_subV_ssq( float *h_RetVal, fVector d_Z, fVector d_X, fVector d_Y, ui size );
 int cusdVF_subV_ssq( float *d_RetVal, fVector d_Z, fVector d_X, fVector d_Y, ui size );
 float VFcu_subV_ssq( fVector h_Z, fVector h_X, fVector h_Y, ui size );
 |  
| CUDA function Pascal/Delphi | uses VFmath;
 function cudaVF_subV_ssq( var h_RetVal:Single; d_Z, d_X, d_Y:fVector; size:UIntSize ): IntBool;
 function cusdVF_subV_ssq( d_RetVal:PSingle; d_Z, d_X, d_Y:fVector; size:UIntSize ): IntBool;
 |  
  | 
| Description | Zi = Xi - Yi
 ssq = Sum(Zi2)
This function saturates infinities into HUGE_VAL and treats input values of ±NAN as ±HUGE_VAL. The reasoning behind this is that V?_subV_ssq finds its main use inside nonlinear fitting routines. If the fitting routine tries a bad parameter set, you want it to get the feedback that the guess was far off; you do not want it to be punished by an exception or programme crash.
  |  
  | 
 | 
| Return value | sum-of-squares of the difference of the two vectors |  
  | 
 |