VF_subV_ssqVD_subV_ssqVE_subV_ssq
FunctionSubtract two vectors and return the sum-of-squares of the differences
Syntax C/C++#include <VFmath.h>
float VF_subV_ssq( fVector Z, fVector X, fVector Y, ui size );
C++ VecObj#include <OptiVec.h>
T vector<T>::subV_ssq( const vector<T>& X, const vector<T>& Y );
Pascal/Delphiuses VFmath;
function VF_subV_ssq( Z, X, Y:fVector; size:UIntSize ): Single;
CUDA function C/C++#include <cudaVFmath.h>
int cudaVF_subV_ssq( float *h_RetVal, fVector d_Z, fVector d_X, fVector d_Y, ui size );
int cusdVF_subV_ssq( float *d_RetVal, fVector d_Z, fVector d_X, fVector d_Y, ui size );
float VFcu_subV_ssq( fVector h_Z, fVector h_X, fVector h_Y, ui size );
CUDA function Pascal/Delphiuses VFmath;
function cudaVF_subV_ssq( var h_RetVal:Single; d_Z, d_X, d_Y:fVector; size:UIntSize ): IntBool;
function cusdVF_subV_ssq( d_RetVal:PSingle; d_Z, d_X, d_Y:fVector; size:UIntSize ): IntBool;
DescriptionZi = Xi - Yi
ssq = Sum(Zi2)

This function saturates infinities into HUGE_VAL and treats input values of ±NAN as ±HUGE_VAL. The reasoning behind this is that V?_subV_ssq finds its main use inside nonlinear fitting routines. If the fitting routine tries a bad parameter set, you want it to get the feedback that the guess was far off; you do not want it to be punished by an exception or programme crash.

Error handlingnone
Return valuesum-of-squares of the difference of the two vectors
See alsoVF_subV,   VF_ssqdevV,   VF_subV_sumabs,   VF_subV_chi2,   chapter 13 of http://www.optivec.com/matfuncs/

VectorLib Table of Contents  OptiVec home