VF_subV_ssq | VD_subV_ssq | VE_subV_ssq |
|
Function | Subtract two vectors and return the sum-of-squares of the differences |
|
Syntax C/C++ | #include <VFmath.h>
float VF_subV_ssq( fVector Z, fVector X, fVector Y, ui size ); |
C++ VecObj | #include <OptiVec.h>
T vector<T>::subV_ssq( const vector<T>& X, const vector<T>& Y ); |
Pascal/Delphi | uses VFmath;
function VF_subV_ssq( Z, X, Y:fVector; size:UIntSize ): Single; |
|
CUDA function C/C++ | #include <cudaVFmath.h>
int cudaVF_subV_ssq( float *h_RetVal, fVector d_Z, fVector d_X, fVector d_Y, ui size );
int cusdVF_subV_ssq( float *d_RetVal, fVector d_Z, fVector d_X, fVector d_Y, ui size );
float VFcu_subV_ssq( fVector h_Z, fVector h_X, fVector h_Y, ui size );
|
CUDA function Pascal/Delphi | uses VFmath;
function cudaVF_subV_ssq( var h_RetVal:Single; d_Z, d_X, d_Y:fVector; size:UIntSize ): IntBool;
function cusdVF_subV_ssq( d_RetVal:PSingle; d_Z, d_X, d_Y:fVector; size:UIntSize ): IntBool;
|
|
Description | Zi = Xi - Yi
ssq = Sum(Zi2)
This function saturates infinities into HUGE_VAL and treats input values of ±NAN as ±HUGE_VAL. The reasoning behind this is that V?_subV_ssq finds its main use inside nonlinear fitting routines. If the fitting routine tries a bad parameter set, you want it to get the feedback that the guess was far off; you do not want it to be punished by an exception or programme crash.
|
|
|
Return value | sum-of-squares of the difference of the two vectors |
|
|