VF_derivV | VD_derivV | VE_derivV |
|
Function | Derivative of one array with respect to another |
|
Syntax C/C++ | #include <VFstd.h>
void VF_derivV( fVector Z, fVector X, fVector Y, ui size ); |
C++ VecObj | #include <OptiVec.h>
void vector<T>::derivV( const vector<T>& X, const vector<T>& Y ); |
Pascal/Delphi | uses VFstd;
procedure VF_derivV( Z, X, Y:fVector; size:UIntSize ); |
|
CUDA function C/C++ | #include <cudaVFstd.h>
int cudaVF_derivV( fVector d_Z, fVector d_X, fVector d_Y,ui size );
void VFcu_derivV( fVector h_Z, fVector h_X, fVector h_Y,ui size );
|
CUDA function Pascal/Delphi | uses VFstd;
function cudaVF_derivV( d_Z, d_X, d_Y:fVector; size:UIntSize ): IntBool;
procedure VFcu_derivV( h_Z, h_X, h_Y:fVector; size:UIntSize );
|
|
Description | Z(X) = dY(X) / dX.
The derivative of Y with respect to X is calculated by parabolic interpolation and stored in Z. If the elements of X are equally-spaced, it is better to use VF_derivC. The inverse procedure, i.e. integration, is performed by VF_runintegralV. |
|
|
|
|