FunctionNorm (square of the absolute value) of cartesian-complex numbers
Syntax C/C++#include <VCFstd.h>
void VF_CtoNorm( fVector Norm, cfVector X, ui size );
C++ VecObj#include <OptiVec.h>
void vector<T>::CtoNorm( const vector<complex<T>>& X );
Pascal/Delphiuses VCFstd;
procedure VF_CtoNorm( Norm:fVector; X:cfVector; size:UIntSize );
CUDA function C/C++#include <cudaVCFstd.h>
int cudaVF_CtoNorm( fVector d_Norm, cfVector d_X, ui size ); void VFcu_CtoNorm( fVector h_Norm, cfVector h_X, ui size );
CUDA function Pascal/Delphiuses VCFstd;
function cudaVF_CtoNorm( d_Norm:fVector; d_X:cfVector; size:UIntSize ): IntBool;
procedure VFcu_CtoNorm( h_Norm:fVector; h_X:cfVector; size:UIntSize );
DescriptionNormi = Re2(Xi) + Im2(Xi)
This definition of the Norm of a complex number is the same as in C++, but it is not consistent with the usual definition in mathematics, where the term "norm" is used as a synomym for "absolute value" or "magnitude". As defined here, the Norm is the square of the absolute value. The absolute value itself is available by the functions VF_CtoAbs (without error handling) and VCF_abs (with error handling).
Error handlingnone
Return valuenone
See alsoVF_PolartoC,   VF_CtoReIm,   VF_CtoArg,   VF_CtoAbs

VectorLib Table of Contents  OptiVec home